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a b s t r a c t 

This work presents a Hypothesis on Degradation Modification (HoD) based on Co-occurrence Pixel-Block 

Pairs (CPB, which is proposed in our previous work) to further resist background changes for foreground 

detection, such as illumination changes and background motion. HoD provides CPB with a model update 

strategy that can be used for a long time. While further improving the robustness of CPB, it also stabilizes 

the efficiency of CPB over time. A key contribution of this work is it offers a robust background subtrac- 

tion for foreground detection in dynamic scenes. The observation is robust to illumination changes and 

background motion and demonstrates the ability of HoD. Experimental results obtained from the datasets 

under different challenges of PETS 2001, AIST-Indoor, SBMnet and CDW-2012 databases prove that our al- 

gorithm has a good effectiveness for foreground detection. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

a  

s  

(  

s  

o  

c  

a

 

i  

b  

V  

s  

t  

[  

p  

t  

g  

o

 

1. Introduction 

As a pre-processing approach utilized in many computer vi-

sion applications [1] , foreground detection plays an important role

in various tasks like video surveillance [2] , traffic monitoring [3] ,

scene background initialization [4,5] and object tracking [6,7] . As a

basic understanding, foreground is any change in video sequences.

In most cases, it should be the moving objects which are of inter-

est to the person, such as pedestrians, vehicles, animals etc., and

background must be the stationary objects that could vary in color

and intensity under illumination changes over time [8] . Generally,

foreground and background should be defined based on the ground

truth. 

As we know, one simple way to do background model is to ac-

quire a background image without any moving objects. However,

foreground detection is faced with many practical challenges [9,10] ,

especially the background changes, not least of which is those re-

lated to illumination changes , e.g. variable sunlight or lights being

switched on and off indoors, and background motion , e.g. the sway-

ing motion of trees, fleeting cloud and moving waves on the water.

The typical examples of these challenges are shown in Fig. 1 . 
∗ Corresponding author. 
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To handle such challenges, previous statical methods have been

roposed, in which the intensity of each pixel is independently

nalyzed in the temporal domain and then the current frame is

ubtracted, such as Pfinder [11] , using the Gaussian Mixture Model

GMM) to build a pixel-wise model for each pixel and Kernel Den-

ity Estimation (KDE) [12] , a non-parametric method can detect

bjects in dynamic scenes. However, such kind of methods is diffi-

ult to solve illumination changes with the intensity varies rapidly

nd significantly. 

Because a target pixel shares a similar change with its neighbor-

ng pixels, recent many local feature based methods [13–15] have

een put forward for background modeling. Barnich et al. proposed

iBe [14] , a method that involves comparing each pixel with a

et of previous values located the same or neighborhood positions

o evaluate whether a pixel belongs to the background. Subsense

15] , a recent method following ViBe’s strategy to build a non-

arametric background model with the Local Binary Similarity Pat-

erns (LBSP) [16] features. However, such local feature based back-

round models is susceptible to be affected by the dynamic motion

f background, thus losing the robustness. 

Pattern classification technologies based on convolutional neu-

al network (ConvNets) have also been used in background sub-

raction [17,18] . For example, Braham et al. [18] presented an

lgorithm based on spatial features learned with ConvNets for

heir scene-specific backgrounds. These methods using ConvNets

https://doi.org/10.1016/j.sigpro.2019.02.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.02.021&domain=pdf
mailto:zhouwenjun@hce.ist.hokudai.ac.jp
https://doi.org/10.1016/j.sigpro.2019.02.021
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Fig. 1. The typical example results in illumination challenges and background motion by using the static frame difference approach, (a) Illumination changes: one sequence 

with the light intensity typically varies during day. (b) Background motion: one sequence with the water rippling. 
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an deal well with complicated backgrounds. However, a substan-

ial amount of labeled data with teachers signals or ground truth

s necessary for their training, which are generally of high cost and

ay not always be available [19] . In contrast, CPB is low cost in

ollecting the training data without any teachers signals. 

To overcome above problems, this paper proposed a robust

oreground detection method called as CPB against strong back-

round changes, which has already been described in [20] . And

n order to further resist background changes for foreground de-

ection, we introduce the Hypothesis on Degradation Modification

HoD, which is introduced briefly in [21] ) into CPB. Here, we will

ntroduce HoD with new contents and give more detailed expla-

ations for our work with new experimental results. Our contribu-

ions of this paper are as follows: (1) on the basis of CPB, this work

roposes the Hypothesis on Degradation Modification (HoD) to fur-

her improve the robustness of CPB and stabilize the efficiency of

PB in the long-term use process; (2) HoD can help CPB to re-

ist the interference under the adversarial training data [22] , that

s verified by the experiments in Section 4 ; (3) for the dynamic

cenes, more experiments and analyses further validate the effec-

iveness of the combination of CPB and HoD. 

The main contents of this paper are as follows. Sections 2 intro-

uces the working mechanism of Co-occurrence Pixel-Block Pairs

ackground Model (CPB). Section 3 gives an introduction and ex-

lanation of Hypothesis on Degradation Modification (HoD) in de-

ails. Section 4 demonstrates the ability of HoD with experiments

nd analyzes the experimental results from the dataset of PETS

001 [23] , AIST-Indoor, SBMnet [24] and CDW-2012 [25] to demon-

trate the robustness of CPB and CPB+HoD. Discussions and conclu-

ions are described in Section 5 and Section 6 , respectively. 

. Methodology 

In our previous work [26] , we proposed one “pixel to pixel”

tructure strategy to estimate the target pixel p with other pix-

ls one by one and then to select the suitable supporting pixels

or the target pixel p , and this strategy is quite effective at dealing

ith background changes, however it suffers from the open prob-

em of time consumption. In order to handle this problem, we need

o find a strategy to avoid the defect of CP3 [26] , therefore the ap-

roaches using superpixels for cost reduction in follow-up process-

ng and for image matting [27–29] could be helpful. For reducing

he processing cost, we introduced a “pixel-to-block” structure into

PB as an extension of “pixel-to-pixel” structure as shown in Fig. 2 .

ig. 2 , which illustrates the two processes of CPB: training process
nd detecting process. In this work, we compare the target pixel

 with the Q 

B as block, and define { Q 

B 
k 
} k =1 , 2 , ... ,K = { Q 

B 
1 
, Q 

B 
2 
, . . . , Q 

B 
K 
}

o denote a supporting block set for the target pixel p . We divide

ach frame (of size U × V ) into blocks Q 

B of size m × n . Hence, each

lock Q 

B consists of m × n pixels: 

 

B = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Q 11 Q 12 . . . Q 1 n 

Q 21 Q 22 . . . Q 2 n 

. . . 
. . . 

. . . 
. . . 

Q m 1 Q m 2 . . . Q mn 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

. (1) 

Similar to [26] , we assume that each pixel Q mn that belongs to

eference block Q 

B is correlated with target pixel p . As a result, we

xpect one or more blocks Q 

B to possess a stable intensity differ-

nce I p − Ī Q throughout the whole training frames ( ̄I Q is the aver-

ge intensity of block Q 

B ), even though pixel p and block Q 

B can

e at quite dissimilar positions, as shown in Fig. 3 , in which the

ize of Q 

B is set to 5 × 5. In theory, since a large part of computa-

ion cost can be reduced in the training process, CPB is expected

n times faster in the training than CP3 [26] . When such rela-

ion maintains steady as time goes by, the deviation between the

arget pixel p and its supporting block Q 

B would be follow a sin-

le Gaussian distribution. This relation is called as “Co-occurrence

etween intensity” as shown in Fig. 3 (b) and we can utilize this

nowledge to design the background model for the characteristics

n background pixels. 

.1. Supporting blocks selection 

In this work, we utilize the Pearson’s product-moment correla-

ion coefficient to select the supporting blocks { Q 

B 
k 
} for each target

ixel p : 

 Q 

B 
k } k =1 , 2 , ... ,K = 

{
Q 

B | γ (
p, Q 

B 
)
is the K highest 

}
, (2) 

here (
p, Q 

B 
k 

)
= 

C p, ̄Q k 

σp · σQ̄ k 

(3) 

nd C p, ̄Q k 
is the intensity covariance between target pixel p and its

 -th supporting block Q 

B 
k 

from a set of training frames, σ p and σQ̄ k 
re the standard deviations in the pixel and the block, respectively.

In general, we can expect that if the pixel-block pair (p, Q 

B 
k 
)

eeps a high correlation coefficient, then the supporting block Q k 

an provide some reliability to estimate the current state of the

arget pixel p . Fig. 4 shows example layouts of the supporting
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Fig. 2. Overview of working mechanism of CPB. 

Fig. 3. Basic structure of co-occurrence pixel to block pair. (a) Co-occurrence pixel-block pair structure. (b) Correlation of pixel-block pair (p, Q B 1 ) . (c) Statistical model of 

pixel-block pair (p, Q B 1 ) . 
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blocks using P ET S2001 − dataset3 − camera 1 and the target pixels

are selected from the four representative regions: “Grass,” “Road,”

“Building,” “Sky,” respectively. 

2.2. Co-occurrence background model 

The work builds a co-occurrence model using the single Gaus-

sian distribution for the selected K pixel-block pairs: 

�k ∼ N(b k , σ
2 
k ) �k = I p − Ī Q k , (4)

where I p is the intensity of the pixel p at t frame and Ī Q k is the av-

erage intensity of the block Q 

B 
k 

at t frame. In CPB, each pixel-block

pair (p, Q 

B 
k 
) owns an unique Gaussian and we record two parame-

ters that the differential increment b k and the standard deviation

σ k as model as Fig. 2 shows. 

Where, b k is defined as the following expression: 

b k = 

1 

T 

T ∑ 

t=1 

�k (5)

and the variance estimation is defined as follows: 

σ 2 
k = 

1 

T 

T ∑ 

t=1 

( �k − b k ) 
2 
, (6)

where T is the sequence of frames. Through the training process,

the parameters σ and b are recorded as a model description
k k 
or the next detecting stage and then the background model is

uilt as a list consisting of [ u k , v k , b k , σ k ] for supporting block set

 Q 

B 
k 
} k =1 , 2 , ... ,K , where ( u k , v k ) is the coordinate of supporting block. 

.3. Correlation dependent decision 

Based on the co-occurrence background model built above, CPB

an acquire the spatial-temporal information of target pixel p and

hen compare the difference between target pixel p and support-

ng block Q 

B 
k 

to judge the state of target pixel p as shown in Fig. 5 .

nce the co-occurrence relation appears an outlier, such situation

ould be regarded as an unsteady state of pixel-block pair (p, Q 

B 
k 
)

t current frame, thereby we could estimate target pixel p as fore-

round. This knowledge can be realized as the following: the state

 (unsteady) means p may be occluded by any foreground object,

hile the state B (steady) means that p may be exposed to the

amera as it has been in the statistical training frames. In order

o obtain any difference between these two states, for each pixel

 , we introduce an index value as a “penalty” for violating the re-

ationships authorized at the statistical training process. In other

ords, if the state F is associated with pixel p and the pixel value

ay also be changed, therefore we can utilize statistical tests in

hich the difference may belong to the registered distribution or

e rejected as a value outside of the distribution. 
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Fig. 4. Example layouts of pixel-block pairs for different position pixels p 1 (256, 483), p 2 (551, 432), p 3 (435, 168) and p 4 (250, 41), respectively, where K = 5 and the size of 

each block is 5 × 5, and examples of the correlation of pairs at different position, respectively. 
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For each pair (p, Q 

B 
k 
) , a binary function for identifying its steady

r unsteady state can be defined as follows: 

 k = 

{
1 if 

∣∣(p − Q 

B 
k 

)
− b k 

∣∣ ≥ η · σk 

0 otherwise 
, (7) 

here 
∣∣(p − Q 

B 
k 
) − b k 

∣∣ r epr esents a bias in the intensity difference

etween the real value and the modeled parameter b k to estimate

he steady or unsteady state of each pair (p, Q 

B 
k 
) , where η is a con-

tant for setting some significant level in this statistical test proce-

ure and ω k presents a logical judgment: the steady state with 0

r the unsteady state with 1 for each pair, respectively. To define

n efficient decision function for target pixel, here we introduce

k of the k -th elemental pair (p, Q 

B 
k 
) as a weight in the weighted

ummation of the products ω k ·γ k based on the previous decision

roposed in [26,30] . The definition is realized as Γ as follows: 

= 

K ∑ 

k =1 

ω k · γk (8) 

ith two following significances: first, Γ could count up the un-

teady pairs; second, the maximum value of Γ could be possibly

btained in the case that all of the K elemental pairs are in the

nsteady state and it is also a relative value with respect to the

arget pixel. Furthermore, Γ would not miss to count any high γ k 

n the summation to lead a wrong decision. To realize relative de-

ision making on Γ, we can have the following possible maximum
alue of it. 

all = 

K ∑ 

k =1 

γk . (9) 

With the consideration of mentioned above, by use of Γall ,

e can define the following evaluation criterion to classify the

arget pixel into the foreground class as: if Γ > λ · Γall , then

 is foreground and λ is a threshold parameter described in

20] with details. The decision function is shown in pseudo-code 

n Algorithm 1 . 

.4. Training data selection 

In this section, we want to give some comments on how to se-

ect the training data as an important step in our CPB’s mechanism.

e need an enough set of suitable data for training, and then CPB

ay train itself properly to detect expected foreground pixels. It

as been a common and important problem in the algorithms that

eed any training data, such like IMBS [31] or SuBSENSE [15] as

ig. 12 in Section 4.2 to do this preparation. In this paper, since we

se many databases that have their own ground truth frames and

herefore we can see some types of the expected foreground pixels,

uch as walking peoples or vehicles, it is possible to select some

rames as the training data, which do not include any excessive

oreground pixels. But in any real tasks in which it is not reality

o take high cost for making effective ground truth data, one may
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Fig. 5. Co-occurrence intensity changes between target pixel p and supporting block Q B overtime. 
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have to make the training data or frames through implicit defini-

tion of foreground pixels and selecting the proper frames. There-

fore, in our experimental demonstration, we prudently select the

frames for training to avoid the emergence of adversarial data. 

3. Hypothesis on degradation modification 

We have introduced the basic CPB algorithm for robust back-

ground subtraction, however, where the data for training and de-

tecting are prepared in advance of the operations. In this work,

we define two types of problems open-set (generalization prob-

lem), which is shown in Fig. 6 (a), where the data in training are

known in advance but the data for detecting are unknown, con-

tinuable, and different from the training data. Open-set is differ-

ent from the type closed-set (classification problem), where the

detecting data can be selected from the same set of the train-

ing data and the also can be known in advance as shown in

Fig. 6 (b). We may have some mechanism to modify the model

to fix some errors which may be observed in open-set condition. In

general, hypothesis of this paper follows two significances: (1) we

assume that some “noise” may arise in detecting process due to a

long time usage of initial CPB background model and we can not
onfirm such “noise” is true or not without any ground truth for

erification in real applications; (2) second, we assume that after a

rolonged using, the initial “Pixel to Block” structure can no longer

dapt to the current, then resulting in errors. Then, based on the

bove assumptions, in this section, we intend to introduce a simple

echanism named Hypothesis on Degradation Modification (HoD)

xtended from CPB to adapt the background changes and reinforce

he robustness of CPB to resist the “noise” in real applications. 

.1. Hypothesis on degradation 

In practice, after a long time utilization of initial CPB back-

round model in an unlearned sequence, the expected relative re-

ation of the pixel-block pair might be broken. In other words, ini-

ial CPB model might generate a degradation with the passage of

ime, then some “noise” might arise in detecting process. Here,

e define such assumption as “Hypothesis on Degradation” and

ame the “noise” in detecting process as “hypothetical noise”: (1)

he hole surrounded by the detected foreground pixels, which is

stimated as the background and we named it ‘NaB’; (2) the dot

urrounded by the non-detected pixels, which is estimated as the

vent and we named it ‘NaE’. Fig. 7 shows an example of the
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Algorithm 1. Correlation dependent decision. 
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Fig. 6. Descriptions of open-set and closed-set conditions. 
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ypothetical noise using copyMachine from CDW-2012 dataset [25] .

o reinforce the merits of CPB background model, we introduce a

actic named Hypothesis on degradation modification (HoD) into

he CPB structure to remove the hypothetical noise. 

Fig. 8 describes an overview of the proposed HoD. Note that

oD is not one post-processing technique, in this study, HoD is

n update approach of model structure to reinforce the robustness

f CPB, and it is also a feasible on-line mode of CPB structure in

uture. Moreover, we also can clearly notice that HoD is a self-

hecking mode, which is completely different from the retraining

ode. In HoD mode, it costs less time and consumes less data cost

ver a period of usage, and is more efficient than the retraining

ode. 

.2. Broken pixel-block pairs detection 

As shown in Fig. 8 , first we need to detect the broken ele-

ental pairs in pixel-block structure of the hypothetical noise. In

his study, we assume that the larger γ (mentioned in Section 2.1 )

ould hold a higher weight in the trained pixel-block structure and

uch pair would be more likely to affect the state of pixels. Thus

t is obvious that the pairs with large γ in unsteady state might

ause a decision on NaE, whereas the pairs with large γ in steady

tate might cause a decision on NaB. With the above assumption,

e propose a weight-based decision function to detect the broken
Fig. 7. Description of hy
air: 

f γm 

≥ γ̄ , then (p, Q 

B 
m 

) is broken (10)

here (p, Q 

B 
m 

) is the pair, which is in unsteady state of NaE or

teady state of NaB. Depending on the noise is NaE or NaB, the

hreshold γ̄ owns different definition. In the case of NaE, it is de-

ned by use of the total number of unsteady pairs M = 

∑ K 
k =1 ω k as

ollows: 

¯ = 

1 

M 

K ∑ 

k =1 

γk · ω k = 

1 

M 

Γ. (11) 

In the other hand, for NaB case, it is defined as follows: 

¯ = 

1 

K − M 

K ∑ 

k =1 

γk · ( 1 − ω k ) = 

1 

K − M 

( Γall − Γ ) . (12) 

There is a slight difference in the above definitions, and then

e record these broken pairs for the next process. This process is

hown in pseudo-code in Algorithm 2 . 

.3. Structure modification 

Then, we try to exchange the broken pair by new one which

s kept as a spare pair in the training process and remove the
pothesized noise. 
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Fig. 8. Overview of HoD Modification. 

Algorithm 2. Broken pixel-block pairs detection. 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

A change in False Positives of 	 860 and 	 900. 

Methods The number of False Positives 

	 860 	 900 

CPB 320 350 

CPB + HoD 1 33 

c  

e  
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m  

t  
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F  
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i  
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hypothesized noise by using the modified pixel-block structure as

shown in Fig. 8 . 

In general, HoD is a new strategy for the background model up-

date. It is not only applied on the top of CPB, but also can be appli-

cable to the other pixel-correlation based algorithms (such as ViBe

[14] based on random neighboring pixels, SuBSENSE [15] based

on local binary similarity patterns features or our previous work

CP3 [26] ), HoD provides a new and natural thought: the structure

of backgrond model can be updated by the designed correlation

weight, which is discussed in details in Section 3 and the validity

of HoD is proved in Section 4.1 and 4.2. 

4. Experiments 

4.1. Verification of HoD’s performance 

In order to verify the performance of HoD in open-set condi-

tion, we compare the results of CPB and CPB+HoD in the sequence
anoe , which is a typical scene with rippling water [25] . In this

xperiment, we select the first 300 frames for training and then

t detecting process, the frame # 845 to # 930 with the continuous

ovement of the canoe, a total of 86 frames are selected as the

esting frames. Fig. 9 shows the typical results of CPB and CPB+HoD

nd Fig. 10 illustrates the F-measure and False Positives comparison

etween CPB and CPB+HoD in the sequence canoe overtime. From

igs. 9 and 10 , it is clear that with the help of HoD, CPB+HoD has a

ignificant improvement over CPB and further restrained the noise

n scene. Table 1 illustrates a change in False Positives of 	 860 and

 900 between CPB and CPB+HoD, from the table we can note that

oD greatly restrains the noise in dynamic scene. These results

uggest that HoD can effectively suppress the degradation in CPB

ith the passage of time. 

.2. Ability of HoD under adversarial data 

To get an idea of what adversarial looks like, consider one demo

rom “Explaining and Harnessing Adversarial Examples” [22] : in-

utting a panda image, and adding some perturbation that has

een evaluated to make the image be recognized as a gibbon with

igh confidence. Similarly, we can define the following training

ata as the adversarial data: 
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Fig. 9. Typical results for CPB and CPB+HoD in the sequence canoe . 

Fig. 10. Comparison of CPB and CPB+HoD in the sequence canoe overtime. 

Fig. 11. A typical example of adversarial data: giant truck passes the background. 

Fig. 12. Influence of adversarial data on the detection. 
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under the adversarial data. 
• training data includes a high-density crowd or large-scale

object; 
• foreground information is mixed with or even covers back-

ground. 

Fig. 11 shows a typical example of adversarial data, which is

rom the sequence fall with swaying branches in the CDW-2012
ataset [25] . The giant truck passes the background and covers half

f the background information. The typical results under adversar-

al training are shown in Fig. 12 . In this case, the training data in-

ludes 150 frames ( # 2460- # 2609, selected from the sequence fall ):

a) 120 frames without any large-scale objects ( # 2460- # 2579); (b)

0 frames with a giant truck ( # 2580- # 2609) and the interference

ate is 20 %, we define the interference rate as the percentage of

dversarial frames to total frames. 

As mentioned in Section 2.4 , CPB is not good at the adversarial

ata. However, HoD can help CPB to resist the interference from

he adversarial data and we design the experiments to verify the

bility of HoD and the details are presented in Table. 2 . Fig. 13

hows the typical results of CPB and CPB+HoD and Fig. 14 shows

he F-measure comparison between CPB and CPB+HoD in the six

ifferent cases. 

We note that CPB will lose the efficiency as the interference

ncreases. However, HoD can help CPB to resist the interference,

hich is demonstrated in Figs. 13 and 14 , because HoD can repair

nd stabilize the initial model structure of CPB by selecting new

ixel-block pairs from the candidate supporting block set as de-

cribed in Section 3 . The results demonstrate the ability of HoD
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Table 2 

Experimental design under the adversarial training data from the sequence fall . 

Case Interference rate Frames without any large-scale objects Frames with a giant truck Total number of frames 

1 5% # 2010- # 2579 (570 frames) # 2580- # 2609 (30 frames) 600 frames 

2 10% # 2310- # 2579 (270 frames) 300 frames 

3 15% # 2410- # 2579 (170 frames) 200 frames 

4 20% # 2460- # 2579 (120 frames) 150 frames 

5 25% # 2490- # 2579 (90 frames) 120 frames 

6 30% # 2510- # 2579 (70 frames) 100 frames 

Fig. 13. Typical results of CPB and CPB+HoD in different interference cases. 

Fig. 14. Comparison of CPB and CPB+HoD in six interference cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Parameters setting of CPB. 

Number of supporting blocks K 20 

Gaussian model threshold η 2.5 

Correlation dependent decision threshold λ 0.5 
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4.3. Experimental setup 

Considering the several challenges of video surveillance for

background subtraction algorithm [32] . We consider the following

datasets to evaluate the proposed methods: 

• PETS2001 dataset [23] : one typical sequence of gradual illu-

mination changes. 
• AIST-Indoor dataset: the sequence with sudden illumina-

tion change, which contains the strong sudden light changes

when the auto-door opening, in such moment it is diffi-

cult to detect true foreground from the scene. AIST-Indoor

dataset is provided by the National Institute of Advanced In-

dustrial Science and Technology in Japan. 
• SBMnet dataset [24] : one sequence advertisement Board

with strong background motion is selected from SBMnet

dataset for testing, and this sequence contains an ever-

changing advertising board in the scene. 
• CDW-2012 dataset [25] : one typical sequence canoe with

water rippling is selected from the CDW-2012 dataset. 

We compare the proposed CPB and CPB+HoD with six different

foreground detection techniques: GMM [11] and KDE [12] , which

are two well-known traditional algorithms, and four state of the

art techniques IMBS [31] , T2FMRF-UV [33] , ViBe [14] and SuBSENSE

[15] . 
At first, GMM [11] and KDE [12] are two main basic stan-

ard techniques that are often used to make the basic comparison

14,34–36] . Second, the state of the art techniques IMBS [31] and

2FMRF-UV [33] are the foreground extraction techniques specifi-

ally for dynamic background. And then, ViBe [14] and SuBSENSE

15] , which are two of the leading unsupervised techniques for

oreground detection, especially SuBSENSE [15] is one of the top-

anked techniques in CDW-2012 dataset at present. Based on the

bove reasons, we select these six different techniques for compar-

tive experiments. 

In contrast to the methods with complex strategies [15,31,33] ,

PB is a low-complexity algorithm that is more easily realized. The

arameters for GMM, KDE, IMBS, T2FMRF-UV, ViBe and SuBSENSE

ere set by using the tool bgslibrary [37] . In experiments, we set

ach block as 8 × 8 pixels for CPB, the parameters are shown in

able. 3 and have been discussed in [20] how to decide. 

In order to evaluate the methods in pixel level, we utilize three

ommon analysis measurements [38–40] : Precision, Recall , and F-

easure . These metrics are widely used to estimate the quality of

ackground subtraction methods [10,32] , 

 recision = 

T P 

T P + F P 
, (13)

nd 

ecall = 

T P 

T P + F N 

, (14)

here TP, FP and FN indicate the number of true positives, false

ositives and false negatives, respectively. Meanwhile, we use F-

easure as the harmonic mean of Precision and Recall , 

 − measur e = 

2 P r ecision · Recall 

P recision + Recall 
. (15)

For further evaluating our CPB and CPB+HoD, we introduce the

eak signal-to-noise ratio (PSNR) as our metric [41,42] , which can

e used o measure the quality of the estimated resulted com-

ared with the background truth [43] . The definition of PSNR is
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Fig. 15. Representative results from the illumination change challenges: (a) illumination becomes stronger in daylight; (b) illumination becomes lower in daylight; (c) 

automatic door suddenly opens and the light changes; (d) person suddenly enters the scene, and the light switches on automatically. 
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alculated as follows:, 

 SNR = 10 · log 10 

(
255 

2 

MSE 

)
, (16)

here MSE is the mean square error. 
.4. Experimental comparison with other algorithms 

Experimental results of the foreground detection are presented

n Figs. 15 and 16 . Tables 4 and 5 list the evaluation of these ap-

roaches in pixel level. F-measure is the comprehensive evaluation

or foreground detection in pixel level and it should be as large as

ossible. 
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Fig. 16. Representative results from background motion challenges: (a) advertisement board starts to change; (b) advertisement board stops changing; (c) canoe enters the 

scene; (d) canoe continues to move. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Illumination changes: Fig. 15 shows the illumination

change challenges, which are gradual illumination changes

(global illumination changes) and sudden illumination

changes (local illumination changes). The results demon-

strate that our methods work well during illumination

changes, especially sudden illumination changes. Here, we

explain the difference in our model. For example, ViBe

[14] is based on an assumption that the correlation of pix-

els, that is depended on the distance in spatial between

them (e.g. the LBP feature in SuBSENSE [15] , where the tar-

get pixel has a high correlation with its neighboring pixels).
However, this mechanism ignores the localized relation be-

tween each pixel, and the detection is insensitive and can-

not adapt to local illumination changes as shown in Fig. 15 .

In CPB, due to the multiple supporting blocks for each tar-

get pixel, the co-occurrence pixel-block pairs build a mul-

tiple and spatial structure; thus, this structure maintains a

stable statistical correlation more steadily for each target

pixel and abandons the prior assumption of local correlation.

This is why, CPB can extract the foreground sensitively un-

der both global and local illumination changes as shown in

Table 4 . 
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Table 4 

Performance evaluation for foreground detection during illumination changes. 

Datasets PETS 2001 AIST 

Methods Precision Recall F-measure PSNR Precision Recall F-measure PSNR 

GMM [11] 0.6465 0.9508 0.7697 39.46 0.6523 0.9207 0.7636 40.57 

KDE [12] 0.5181 0.8836 0.6531 17.77 0.5896 0.6944 0.6377 38.16 

IMBS [31] 0.5162 0.8841 0.6518 16.20 0.5760 0.6923 0.6288 36.36 

T2FMRF-UV [33] 0.5818 0.8365 0.6863 34.94 0.6382 0.5818 0.6087 45.65 

ViBe [14] 0.7059 0.8821 0.7842 43.42 0.5005 0.5146 0.5074 9.11 

SuBSENSE [15] 0.9008 0.8840 0.8923 54.11 0.5864 0.7047 0.6401 37.14 

CPB 0.9566 0.7517 0.8418 56.05 0.8651 0.8181 0.8409 53.14 

CPB + HoD 0.9652 0.7562 0.8480 56.39 0.8668 0.8227 0.8442 53.31 

∗ Note that red entries indicate the best in measurement, and blue entries indicate the second best. 

Table 5 

Performance evaluation for foreground detection during background motion. 

Datasets SBMnet CDW-2012 

Methods Precision Recall F-measure PSNR Precision Recall F-measure PSNR 

GMM [11] 0.5151 0.5196 0.5174 26.92 0.6748 0.7024 0.6883 21.71 

KDE [12] 0.4962 0.4856 0.4909 21.67 0.6584 0.8630 0.7468 17.22 

IMBS [31] 0.5095 0.5118 0.5107 30.09 0.7315 0.8911 0.8035 21.60 

T2FMRF-UV [33] 0.5508 0.5179 0.5338 35.38 0.6797 0.6114 0.6438 23.49 

ViBe [14] 0.6427 0.5368 0.5850 35.16 0.8114 0.7821 0.7965 28.02 

SuBSENSE [15] 0.5018 0.5033 0.5025 27.62 0.9766 0.7649 0.8573 30.80 

CPB 0.7653 0.5118 0.6133 36.64 0.9283 0.7730 0.8436 32.61 

CPB + HoD 0.7973 0.5214 0.6350 37.39 0.9809 0.7830 0.8708 34.16 

∗ Note that red entries indicate the best in measurement, and blue entries indicate the second best. 
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• Background motion: Fig. 16 also shows two background

motion challenges, which are sudden changes in background

like a continuously changing advertising board in the scene

and regular movement like rippling water. Video sequences

contain the temporal context information and our CPB

model can learn this information from the training data

to avoid interference from background information such as

background motion, during the detection process, and then

accurately extract the current foreground information ( ob-

ject ). This is different from the approaches based on lo-

cal features (e.g., SuBSENSE [15] or ViBe [14] ), which can-

not adapt in non-ideal cases, for example, where textures

are missing or there is a dynamic background. Based on

this knowledge, our model can handle both of the changes

well, and outperforms other methods significantly for sud-

den background motion as shown in Table 5 . 

.5. Computational cost 

This section, we compare the processing time of our proposed

ethods with others in terms of fps. We evaluate the time re-

uired in foreground detection with the tool in the MATLAB plat-

orm (Intel E3 3.5GHZ and 16G) and utilize the testing frames

rom canoe [25] (frame size: 320 × 240). From the above results in

able. 6 , observing that our methods lead an intermediate level in

he detection process. CPB does not dominate in detecting time as
Table 6 

Processing time comparison in FPS. 

Methods Processing speed 

GMM 81 

KDE 69 

IMBS 33 

T2FMRF-UV 60 

ViBe 149 

SuBSENSE 14 

CPB 30 

CPB + HoD 27 

i  

C  

s  

i  

s  

i  

g  

i  

f  
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p  

r  
llustrated in the Table. 6 . Because of the multiple “pixel to block”

tructure of CPB, it takes some time to estimate the current state

f the target pixel p as discussed in [20] . For each pair ( p, Q 

B ), we

efine all the pixels Q mn of block Q 

B follow the Eq. (7) , then we

an estimate the current state of the pair ( p, Q 

B ) as described in

ection 2.3 . Based on this mechanism, it takes time on detection.

o solve this problem, on the one hand, we can appropriately re-

uce the size of block to achieve the reduction in detecting time.

n the other hand, we would like to introduce the parallel process-

ng implement into our detection, which is also employed in [44] .

or example, we can divide the current input frame into N non-

verlapping regions based on the number of available CPU cores.

hen, detecting the foreground pixels of each individual region in-

tead of the full scene detection. We would like to optimize the

rogram to further reduce the processing time on detection in the

uture. 

. Discussion 

Compared with the classification algorithms based on ConvNets,

PB is a simple algorithm in training data preparation. CPB is a sta-

istical model based on the extraction of background information

o distinguish the outliers (i.e., foreground) from background. Quite

ifferent from the ConvNets based algorithms, it doesn’t need any

abeled data (separate background and foreground data) for train-

ng. Hence, CPB is low cost in training data preparation. However,

PB has its own disadvantage in training data selection. For in-

tance, CPB cannot deal well with the adversarial data if the train-

ng data includes a high-density crowd or large-scale object as de-

cribed in Section 4.2 . Because CPB needs to learn the background

nformation to build the initial background model, which is a sin-

le Gaussian model based on the training data. If the foreground

nformation severely interferes the background, that will lead a

aulty background model for CPB. Therefore, we must be careful

o select the training data for CPB. 

In order to reinforce the robustness of CPB, we propose the Hy-

othesis on Degradation Modification (HoD) and the experimental

esults demonstrate the performance of HoD. One can introduce
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HoD for this purpose at any timing when it is needed for repairing

or fixing broken models. In general, one can estimate the timing

by checking the amount of detected noises in the frames and com-

paring them with the normal frequency of the detection. Another

problem of HoD is that it may lose the effectiveness in some spe-

cific applications, such like small object detection. For example, in

the honeybees detecting and tracking [45] , if we employ HoD to

modify the initial result, that may remove the true target (honey-

bees) to lead a wrong modification. Because, small objects are too

similar to the hypothesized noise as defined in Section 3 , in this

case, HoD may detect the foreground as the hypothesized noise

and then lead a wrong modification. HoD may not so effective in

such applications in reality. 

6. Conclusions 

In this paper, we developed a prospective background model

with hypothesis on degradation modification (HoD) for foreground

detection under dynamic scenes. It was designed to handle the

problem of strong background changes in reality. With the help

of HoD, we further improve the robustness of CPB and stabilize

the effectiveness in the long-term use. And HoD also can help CPB

to resist the interference under the adversarial data. Experimen-

tal results from different challenges show the interest of proposed

method. For foreground detection in dynamic scenes, our method

outperforms other methods significantly in the most challenging

sequences. This background model performances a fairly good de-

tection under extreme environments such as illumination changes

and background motion. Furthermore, as discussed in the paper,

HoD provides a new and natural thought: the structure of back-

ground model can be updated by the designed correlation weigh,

which is a new strategy can be utilized in the pixel-correlation

based algorithms for the background model update. Our future

work would like to develop an on-line mode of CPB structure by

using the hypothesis on degradation modification (HoD). 
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